Credits: 3
Project-driven course focusing on biomedical product design with emphasis on marketability, innovation, entrepreneurship and business. Topics include design fundamentals, problem/needs identification, delineation of realistic constraints and product specifications, intellectual property, market analysis, entrepreneurship, specific advanced design, business plan development, venture funding, and medical product testing methods. REQ: BME 2000 or instructor permission.
Credits: 4
A year-long course integrating concepts and skills from prior courses to formulate and solve problems in biomedical systems, including experimental design, performance and analysis. Testing in tissues/cells & manipulation of molecular constituents to determine structural and functional characteristics for design of therapeutic or measurement systems. Methods incl biochemical, physiological, cell biology, mechanical, electrical and computer, systems, chemical, imaging, and other approaches. Prerequisite: 3rd Year standing in Biomedical Engineering major
Credits: 4
Second half of a year-long course to integrate the concepts and skills from prior courses in order to formulate and solve problems in biomedical systems, including experimental design, performance, and analysis. Lab modules include testing in tissues/cells and manipulation of molecular constituents of living systems to determine their structural and functional characteristics and to design measurement or therapeutic systems. Methods include biochemical, physiological, cell biology, mechanical, electrical and computer, systems, chemical, imaging, and other approaches. Prerequisite: BIOM 3080 or instructor permission.
Credits: 3
A year-long design project required for BME majors. Students select, formulate, and solve a design problem related to a device or a system. Projects use conceptual design, skills obtained in the integrated lab and substantial literature and patent reviews. Projects are sponsored by faculty, physicians and/or companies. Students may work on their own with outside team members when appropriate or with other students in integrative teams. Prerequisite: 4th year standing in the Biomedical Engineering major or instructor permission.
Credits: 3
Second half of a year-long design project in biomedical engineering required for BME majors. Students select, formulate, and solve a biomedically relevant design problem whose deliverables include a device, therapeutic, and/or system. Projects may be sponsored by BME faculty, medical doctors, and/or companies. Students may work on their own with outside team members when appropriate or with other SEAS students in integrative teams. Prerequisite: APMA 2120, 2130, 3110, BME 2101, 2104, 3080, 3310, fourth-year standing in BME major, or instructor permission.
Credits: 3
This course introduces techniques for constructing mathematical and computational models of biological processes and utilizing experimental data to validate those models at many levels of organizational scale -- from genome to whole-tissue. Prerequisites: APMA 2130, APMA 3110; BME 2101, BME 2104, BME 2315
Credits: 3
Applies engineering science, design methods, and system analysis to developing areas and current problems in biomedical engineering. Topics vary by semester. Recent topics include Medical Imaging Systems Theory, BME Advanced Design, BME Electronics Lab, and Systems Biology Modeling and Experimentation. Prerequisite: third- or fourth-year standing and instructor permission.
Credits: 1–3
A year-long research project in biomedical engineering conducted in consultation with a department faculty advisor; usually related to ongoing faculty research. Includes the design, execution, and analysis of experimental laboratory work and computational or theoretical computer analysis of a problem. Requires a comprehensive report of the results. Prerequisite: third- or fourth-year standing, and instructor permission.
Credits: 3
A project-based grounding in biomedical product design, with emphasis on clinical immersion and topics including design fundamentals, problem/needs identification, delineation of realistic constraints and product specifications, intellectual property, market analysis, entrepreneurship, specific advanced design topics, business plan development, venture funding, and medical product testing methods. Prerequisite: Instructor Permission
Credits: 3
Introduces fundamental concepts of cellular physiology; applies quantitative engineering analysis to intra- and intercellular signaling and mechanical systems relevant to organ physiology and pathology; teaches students to learn to think critically about the physiology and cell biology literature. Prerequisite: BME 2104 or equivalent; proficiency with ODEs.
Credits: 3
Second part of physiology sequence for engineering students; focuses on physiology of the cardiovascular, pulmonary, renal, and nervous systems; emphasizes quantitative analysis of organ function, particularly the use of mathematical models to identify and understand key underlying mechanisms. Prerequisite: BME 6101
Credits: 3
Students will gain a fundamental understanding of the theoretical principles underlying biomedical measurements. Topics are organized sequentially from signal initiation through signal processing to downstream statistical analysis of measurements. Students will be exposed to the practical implementation of general principles through homework assignments that involve the analysis and evaluation of molecular, cellular, and clinical measurements. Prerequisites: 1. BME 6101: Physiology I (or equivalent) 2. SEAS graduate student status 3. Some previous exposure to probability-statistics, Fourier analysis, and linear systems 4. Or Instructor Permission
Credits: 3
Introduces techniques for constructing mathematical and computational models of biological processes at many levels of organizational scale from genome to whole-tissue. Topics include choice of techniques, quantitative characterization of biological properties, assumptions and model simplification, parameter estimation and sensitivity analysis, model verification and validation and integration of computational modeling w/experimental approaches. Prerequisites: BME 6101, and BME 2104 or BME 7806 (or equivalent).
Credits: 1–6
FOR M.E. STUDENTS ONLY. A research project in biomedical engineering conducted in consultation with a faculty advisor. Includes the design, execution, and analysis of experimental laboratory work and computational or theoretical computer analysis of a problem. Fulfills the project requirement for the Biomedical Engineering Masters of Engineering degree. Prerequisites: Instructor Permission Required.
Credits: 1–12
Master's Research
Credits: 1–12
Formal record of student commitment to doctoral research under the guidance of a faculty advisor. May be repeated as necessary.