BZ

Bicheng Zhou

Assistant Professor
Unit: School of Engineering and Applied Science
Department: Department of Materials Science and Engineering
Office location and address
395 McCormick Rd
Charlottesville, Virginia 22903
Design of UHTC for Oxidation Resistance
Source: U.S. DOD - Navy - Office Of Naval Research (Onr)
April 01, 2019 – March 31, 2022
MSE 2090: Introduction to Materials Science
Credits: 3
The field of Materials Science drives technological innovations underlying all engineering fields. This course provides a scientific foundation to promote a rigorous understanding of materials from an atomistic to macroscopic viewpoint. Material systems (polymers, metals, ceramics, and electronic) are developed sequentially to provide a framework to explain the fundamental, physical origins of observable and important macro scale properties.
MSE 6230: Thermodynamics and Phase Equilibria of Materials
Credits: 3
Emphasizes the understanding of thermal properties such as heat capacity, thermal expansion, and transitions in terms of the entropy and the other thermodynamic functions. Develops the relationships of the Gibbs and Helmholtz functions to equilibrium systems, reactions, and phase diagrams. Atomistic and statistical mechanical interpretations of crystalline and non-crystalline solids are linked to the general thermodynamical laws by the partition function. Nonequilibrium and irreversible processes in solids are discussed. Prerequisite: Instructor permission.
MSE 6240: Kinetics of Transport and Transformations in Materials
Credits: 3
An introduction to basic kinetic processes in materials and develops basic mathematical skills necessary for materials research. Students learn to formulate the partial differential equations and boundary conditions used to describe basic materials phenomena in the solid state including mass and heat diffusion in single- and two-phase systems, the motion of planar phase boundaries, and interfacial reactions. Students develop analytical and numerical techniques for solving these equations and apply them to understanding microstructural evolution. Prerequisite: MSE 6230.
MSE 8999: Masters Degree Research
Credits: 1–12
Formal record of student commitment to master's thesis research under the guidance of a faculty advisor. May be repeated as necessary.
MSE 9970: Graduate Teaching Instruction-Ph.D.
Credits: 1–12
For doctoral students.
MSE 9999: PHD Dissertation Research
Credits: 1–12
Formal record of student commitment to doctoral research under the guidance of a faculty advisor. May be repeated as necessary.